Final Exam , Math 531, Spring 2014

Ayman Badawi

QUESTION 1. 1)Let R be a finite integral domain. Prove that R is a field.
2) Let R be a finite commutative ring with $1 \neq 0$, and let P be a prime ideal of of R. Prove that P is a maximal ideal of R.
3) Let R be a commutative ring with $1 \neq 0$, and I be an ideal of R. Prove that $I /(M \cap I)$ is a field for every maximal ideal M of R where $I \nsubseteq M$.

QUESTION 2. 1) Let $D=\{f(x) \in Q[x] \mid f(\sqrt[3]{2})=0\}$. Prove that D is a maximal ideal of $Q[X]$
2) Let R be a finite commutative ring with $1 \neq 0$ such that $|R|=p$ for some prime integer p. Prove that R is ring-isomorphic to Z_{p}.
3) Prove that $Z[\sqrt{2}]=\{a+b \sqrt{2} \mid a, b \in Z\}$ is not ring-isomorphic to $Z[\sqrt{5}\}=\{c+d \sqrt{5} \mid c, d \in Z\}$.

QUESTION 3. 1) Let R, S be commutative rings with $1 \neq 0$, and $F: R \rightarrow S$ be a ring homomorphism such that $F(1) \neq 0_{s}$ and $F(1) \neq 1_{S}$. Prove that S is not an integral domain.
2) Let $F \subset K$ be field extensions, $d(x), g(x)$ be monic irreducible polynomials over F such that $d(a)=g(b)=0$ for some $a, b \in K$. Given $\operatorname{deg}(d)=8$ and $\operatorname{deg}(g)=15$. Prove that $g(x)$ is irreducible over $F(a)$.

QUESTION 4. 1) Let $R=Z \times Z, S=\{(a, 0) \mid a \neq 0$ and $a \in Z\}$. Prove that R_{S} is a field.
2) Let $R=Z \times Z, S=\{(a, b) \mid a \notin 3 Z$ and $b \notin 5 Z\}$. First show that S is a multiplicatively closed set of R. How many distinct prime ideals does R_{S} have ? explain.
3) Let $I=12 Z$ is an ideal of Z. Describe all units in $R=Z[x] / I[x]$, i.e., $U(R)=\{f(x)+I[x] \in R$ find conditions on the coefficients of $f(x)\}$.

QUESTION 5. Let a be a positive integer such that $\operatorname{gcd}(a, 2)=1$, and $f(x)=x^{4}+2 x^{2}+2 a \in Q[x]$.
(i) Prove that $f(x)$ is irreducible over Q.
(ii) Let b be a root of $f(x)$. Find a basis for $\left[Q\left(b^{2}\right): Q\right]$. In view of $f(x)$, find the unique monic irreducible polynomial $L(x) \in Q[x]$ such that $L\left(b^{2}\right)=0$.
(iii) Prove that $Q\left(b^{3}\right)=Q(b)$.
(iv) Let $S=\left\{s_{1}, \ldots, s_{n}\right\}$ be a basis for $Q(b)$ over Q. Since $b^{-1} \in Q(b)$, then we know that b^{-1} can be written uniquely as $c_{1} s_{1}+\ldots+c_{n} s_{n}$ where the c_{i} 's are in Q. Find $c_{1}, c_{2}, \ldots, c_{n}$ (you may write each c_{i} in terms of a).

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

